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J .  Phys. A: Math. Gen. 16 (1983) 663-664. Printed in Great Britain 

COMMENT 

Remarks on a note by H Exton 

Henry E Fettis 
1885 California, #62, Mountain View, CA 94041, USA 

Received 21 September 1982 

Abstract. Correct expressions for integrals given in a recent letter by Exton are found. 

In a recent letter in this journal, Exton (1981) obtained the following expressions for 
the integrals 

m 

exp(-yr -ir2) cos(xr) dr (1) 

and 

L(x, y )  = 7- l l2  lom exp(-yr -ir2) sin(xr) dr 

in terms of the confluent hypergeometric function 1Fl(a; b ;  z ) :  

~ ( x ,  y )  =exp(y2-x2) cos(2xy) 

+T-~”{(x -iy)lF1[1; f; -(x - i ~ ) ~ ] + ( x  +iy)lF1[1; f; -(x + i ~ ) ~ ] } ,  (21) 

(22) 
L(X, y )  =xT- ’ /~{~F~[ I ;  i; -(x - ~ Y ) ~ ] + ~ F ~ [ I ;  5; -(x +iy)2])-exp(y2-x2) sin(2xy). 

That these last results are incorrect can be easily verified by considering the special 
cases x = 0 or y = 0. For example, for x = 0, equation (21) would give 

K(O,  y )  = exp(y2)+.Ir-’/*{-iylF1(1; $; y2)+iylF1(1; 9; y’)}= exp(y2), 

whereas, from the original expression, equation ( l ) ,  

K ( O ,  y )  = 27-112 J exp(-t2-2yt) dt = exp(y2)[1-erf(y)]. 
0 

Correct expressions for these integrals can be obtained in terms of the complex 
error function by writing 

m 

~ ( x ,  y ) + i ~ ( x ,  y )  = (2/JG) Jo exp{-[t2+2t(y -ix)]}dt 

m 

= (2/&) exp(z2) exp(-u2) du 

= (2 /J& exp(z2)[1 - erf(z)] 
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where z = y -ix = -i(x + iy) t .  By writing the error function in terms of the confluent 
hypergeometric function with the aid of the relation (Abramowitz and Stegun (1965), 
equation (7.1.21)) 

erf(r)  = ( 2 z / J 3  exp(-z2)1F1(1; 2; z’), 
this becomes 

~ ( x ,  y ) + i ~ ( x ,  y)=exp(z2)-(22/vG)1~1(1;2; 2’). 

Separating real and imaginary parts gives 

~ ( x ,  y )  =exp(-xZ+y2) cos(2xy) 

+(i/vG){(x +iy) lF1[l ;  ;; -(x +iy)’l-(x -iy)lF1[1; ;; -(x -iy)’II, 

L(X, y )  = -exp(-x2+y2) sin(2xy) 

+(1/J&(x +iy)lF1[1; 2; - ( x  + i y ) 2 ~ + ( x  - iy) lF1[1;  2; -(x -iy)’]}. 

The first of the above relations would agree with equation (21) if the quantity ‘i’ were 
inserted before the brackets, and the sign between the terms within the brackets 
changed from ‘+’ to ‘-’, but since 

1F1(1; +; 2’) = 1+2z21F1(1; 2; z’), 
there does not seem to be any simple way to reconcile the second with equation (22). 

Note added in proof. The author’s attention has been called to similar comments by Jacob Katriel (1982 J. 
Phys. A: Math. Gen. 15 709-10). 
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+ The function K ( x ,  y ) + i L ( x ,  y )  is, to a numerical factor, identical to the so-called ‘plasma dispersion 
function’, tabulated by Fried and Conte (1961) and by Fettis et a1 (1972). 


